Eigenvalue bounds for polynomial central potentials inddimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue bounds for polynomial central potentials in d dimensions

If a single particle obeys non-relativistic QM in R and has the Hamiltonian H = −∆ + f(r), where f(r) = ∑k i=1 air qi , 2 ≤ qi < qi+1, ai ≥ 0, then the eigenvalues E = E (d) nl (λ) are given approximately by the semi-classical expression E = min r>0 { 1 r2 + ∑k i=1 ai(Pir) qi } . It is proved that this formula yields a lower bound if Pi = P (d) nl (q1), an upper bound if Pi = P (d) nl (qk) and ...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials

We show that the absolute values of non-positive eigenvalues of Schrödinger operators with complex potentials can be bounded in terms of Lp-norms of the potential. This extends an inequality of Abramov, Aslanyan, and Davies to higher dimensions and proves a conjecture by Laptev and Safronov. Our main ingredient are the uniform Sobolev inequalities of Kenig, Ruiz, and Sogge. Introduction and mai...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Ii

Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrödinger operator −∆ + V in L(R) with complex potential has absolute value at most a constant times ‖V ‖ γ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that hold...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Iii

We discuss the eigenvalues Ej of Schrödinger operators −∆ + V in L(R) with complex potentials V ∈ L, p < ∞. We show that (A) ReEj → ∞ implies ImEj → 0, and (B) ReEj → E ∈ [0,∞) implies (ImEj) ∈ l for some q depending on p. We prove quantitative versions of (A) and (B) in terms of the L-norm of V .

متن کامل

Polynomial Solution of Non-Central Potentials

We show that the exact energy eigenvalues and eigenfunctions of the Schrödinger equation for charged particles moving in certain class of noncentral potentials can be easily calculated analytically in a simple and elegant manner by using Nikiforov and Uvarov (NU) method. We discuss the generalized Coulomb and harmonic oscillator systems. We study the Hartmann Coulomb and the ring-shaped and com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2007

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/40/44/020